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Abstract. We present a straightforward method for finding implicit solutions for nonlinear 
evolution and wave equations. The method is illustrated by finding implicit single solitary 
wave solutions for the Harry Dym, Korteweg-de Vries, modified Korteweg-de Vries, 
Boussinesq and the generalised Korteweg-de Vries equations. 

1. Introduction 

Explicit stationary travelling wave solutions of nonlinear dispersive evolution and wave 
equations can be derived using a variety of well known techniques. Notable among 
these are direct integration (wherever possible), the inverse scattering method (Ablowitz 
and Segur 1981), the Backlund transformation technique (Miura 1976), the Hirota 
method (Hirota 1980), ‘perturbation’ techniques (Sawada and Kotera 1974, Rosales 
1978, Whitham 1979, Wadati and Sawada 1980a, b Hickernell 1983), the summation 
process of the Pad6 type (Turchetti 1980, Liverani and Turchetti 1983), direct linearisa- 
tion techniques (Taflin 1983, Santini et al 1984), the Fredholm determinant method 
(Poppe 1983, 1984) and the real exponential approach (Korpel 1978, Hereman et a1 
1985,1986). For instance, when any of the above methods are applied to the Korteweg- 
de Vries ( K d v )  equation, one can readily derive the well known sech2K(x-ut)-type 
solution, where v,  the constant velocity of the hump-type solitary wave, is related to 
the width 1/K. In fact, the real exponential approach has been employed to derive 
single solitary wave solutions of a large class of nonlinear evolution and wave equations. 
A comprehensive list of these equations and their solutions may be found in Hereman 
et al (1986). 

However, in trying to derive a hump-type solution for the Harry Dym ( H D )  equation 
(Wadati et a1 1979, 1980, Case 1982, Weiss 1983, Kawamato 1984a, b, Hereman et a1 
1989), it was found that no such solution could be obtained. All the equations listed 
in Hereman er a1 (1986) allow for solutions in terms of elementary functions (most 
often rational ones) of real exponentials, e K ( x - u r ) + G  , where 6 is a constant phase. The 
difficulty with the HD equation is that the phase is no longer constant but satisfies a 
transcendental equation. The presence of this transcendental phase gives rise to an 
implicit solution which when solved and plotted, resembles a cusp solitary wave 
(Hereman et a1 1989). 

In retrospect, the fact that nonlinear evolution and wave equations may have 
implicit solutions does not appear totally unnatural. For instance, recall that in the 
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real exponential approach as originally introduced by Korpel (1978), the final solution 
for the nonlinear equation is assumed to be built up from the nonlinear mixings of 
the real exponential solutions to the linear dispersive part of the PDE.  Alternatively, 
we may think of constructing a particular solution from the solution to the nonlinear 
non-dispersive part of the PDE. This is a valid conjecture, since the nonlinear non- 
dispersive part of the K d v  equation in u(x, t )  

where the subscripts refer to the partial derivatives, possesses shock wave solutions 
(Whitham 1974) that are intrinsically implicit: 

U, + uu, = 0 ( 1 )  

u(x, t )  = g ( x -  u(x, t ) ? ) .  ( 2 )  

U, = U3U3, (3) 
The implicit solution of the H D  equation, 

can be written similarly as (Hereman et a1 1989) u(x, t )  = F(f), withf= x - ut + G(f), 
and where Gf = 1 - E 

Based on these two examples and on the discussion above, we may think of solutions 
to an arbitrary nonlinear dispersive PDE to be of the form 

with 
u(x, t )  = F(f) (4a)  

f(x, t ) =  H i ( f ) ~ - H * ( f ) r +  H3(f) (4b) 
wheref(x, t )  may be regarded as a Riemann invariant while the implicit solution U is 
what has been known as the Riemann wave (Whitham 1974, Kalinowski 1982). 

It is true that the H D  equation is different from other nonlinear dispersive evolution 
equations (namely the K d v :  U, + auu, + u3, = 0 )  in the sense that it does not possess a 
linear dispersive part. Is it true, therefore, that this feature ensures that its solution is 
an implicit one, since no implicit solutions of equations like the K d v  equation have 
been reported? We have, on the basis of our examination of some nonlinear evolution 
and wave equations, found the answer to be negative. One may be led to argue that 
the implicit nature of the solutions to the H D  and the kinematic wave equations is due 
to the existence of a hodograph transformation, involving a change of dependent and 
independent variables, which transforms the equations into explicit solvable ones. For 
instance, the H D  can be transformed into the modified K d v  ( M K d v )  equation (Hereman 
et al 1989) as follows. Using the hodograph transformation 

ds  
X = I _ , s  

equation (3) can be recast into the auxiliary equation 

(6) 
for R ( X ( x ,  t ) ,  t )  = u ( x ,  t ) ,  where the new independent variable X depends on x and 
t through the old dependent variable U. By the Cole-Hopf transformation R = T,/T, 
( 6 )  can then be further reduced to the M K d v  in r. 

2 1 2  RI -R3x - ( 3 R , y / R  ) ( I R X - R R ~ X ) = O  

Along the same vein, ( 1 )  can be ‘linearised’ into 

X I  = U (7) 
with 

( 8 )  
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Incidentally, the hodograph transformations ( 5 )  and (8) also cause decoupling of 
the nonlinearity from dispersion. Inversion of the hodograph transformations clearly 
make the explicit solutions of ( 6 )  and ( 7 )  implicit. 

In this paper we investigate the possibility of constructing implicit solitary wave 
solutions to some integrable PDES, e.g. the Kdv,  the M K d v  and the Boussinesq ( B E )  

equations. A brief discussion on the nature of these solutions, the role of dispersion, 
the significance of such implicit solutions and general speculation on whether these 
solutions could have been obtained using the real exponential method is now in order. 
We remind readers that the implicit nature of the solutions to the H D  equation and 
the kinematic wave equation comes from the hodograph transformation as explained 
in the previous paragraph. Furthermore, if the implicit solution of the H D  equation is 
retransformed hodographically to a possible solution of the K d v  (or M K d v ) ,  the result 
is an explicit solution of the latter equation containing a mixture of exponential and 
rational forms. However, the solutions of the Kdv, the M K d v  and the B E  which we will 
present below are inherently implicit, and different from both the well known explicit 
solutions derivable from classical inverse scattering or direct integration and the 
rational-exponential explicit solutions obtainable from the implicit solution of the HD. 

It is worthwhile to note that the role of dispersion, as projected in conventional 
physical pictures of solitary wave formation, is now somewhat different. The traditional 
picture portrays nonlinearity to cause steepening of a (baseband) pulse and dispersion 
to cause spreading, resulting in a smooth hump-type solution which remains unchanged 
in shape as it travels. From a more relaxed viewpoint, we can visualise the dispersion 
in, for instance, the K d v ,  as being instrumental in preserving the shape of the pulse, 
which would otherwise have continually steepened from the action of the nonlinearity 
alone till the advent of shock. The latter is portrayed by the solution to the kinematic 
wave equation (see (2)) .  

We also remark that if we restrict ourselves to implicit single solitary wave solutions, 
integrability is not an essential factor since it is possible to apply our method to 
non-integrable versions of the BE, namely the improved and the modified improved 
Boussinesq equations (Iskandar and Jain 1980, Soerensen et a1 1982). 

The organisation of the paper is as follows. In section 2, we develop the solution 
method taking (4) as our starting point. We then use it for the H D  equation as our 
first example (section 3). In section 4 we obtain a new solution for the K d v  equation 
which is then checked numerically by putting it in as an initial condition and thereafter 
monitoring its propagation. This is then followed up by examples constituting the 
M K d v  equation (section 5)  and the BE equation (section 6 ) .  In section 7, we demonstrate 
the applicability of our solution method to non-integrable systems. The example 
considered will be the generalised K d v  equation for n = 4. Finally, in section 8, 
conditions for the existence of implicit solutions, including the conditions on the 
functions H ,  and H , ,  are specified. A list of the nonlinear PDES solved using our 
technique, and their implicit solutions is also presented. 

2. The solution method 

The procedure for attempting to find implicit solitary wave solutions of nonlinear PDES 

may be summarised in the following steps. 
(1) We start from the general form suggested in (4) and rewrite the given equation 

as a differential equation for F ( f ) .  The coefficients in this ODE will include H I ,  H2 
and H3 and their derivatives with respect to 1: This is achieved by replacing a l a r  and 
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alax in terms of a/af as 

slat =fia/af alax = fxa/af ( 9 a )  

f i  = - H 2 / D  f T  = H l /  D ( 9 6 )  

D ( f )  = 1 - HIJX + H 2 , j  - H3.p ( 9 c )  

and subsequently calculating f i  and f x  from ( 4 )  

with 

(2) We then have to carry out the integration(s) until we find the solution for F 
terms off: This will impose a restriction on some of the H s  and requires an appropriate 
choice for D. Since we are only interested in stationary travelling wave solutions that 
do not change their shape, we have to set 

H2 = vHI ( 1 0 )  
where v is the velocity of the travelling wave. Also, as will be evident from the examples 
in the following sections, the final step will usually entail an expression of the form 

dF/df = ( D /  H 1 ) F ” { P ( F ) } ” *  ( 1 1 )  
where 7 is a constant and P ( F )  is a polynomial in F. The crux of the method for 
finding implicit solutions lies in choosing D /  H I  to be an appropriate explicit function 
of F rather than off: The reason for this will become clear below. 

( 3 )  After we have found the solution F, we have to determine the implicit variable 
f and its relation with x and t. We will start from ( 9 c )  and ( 1 0 )  by expressing ( x  - ut)  
in terms of H , ,  H 3  and D as 

Substituting in ( 4 6 )  with ( l o ) ,  we get 
( X  - ut)  = [ 1 - D - H3, f ] /  H1,p 

H3.f - ( H i . f /  H I  )H3 = 1 - ( H i , f /  Hi )f - D 

( 1 2 )  

( 1 3 )  
which, upon division by H , ,  may be integrated to give 

H d f )  =f - H , ( f )  1 ( D I H , )  df  + C H l ( f  1 ( 1 4 )  

where C is an integration constant. By choosing an appropriate function off for H I ,  
we can solve for H 3 .  

Note that D /  H I  may not be chosen as a function of f: If this choice were made, 
( 1 1 )  may be re-expressed as ( D I H , )  d f = J  dF/[F”{P(F)}”2]l, enabling F to be 
expressed as a function of 5 ( D l  H , )  df after integration. But, from ( 4 b )  and ( 1 4 )  with 
c = 0, it readily follows that F would be an explicit function of ( x  - u t ) .  For the Kdv,  

M K d v  and BE equations, the well known hump-type solutions are then readily recovered. 
For the rest of the paper we will tacitly assume that D / H ,  is an explicit function 

of F. 
( 4 )  Finally, knowing the implicit solution ( F  and H3 as functions o f f )  and f as 

a function of x and t as in (46), we can plot the explicit solution U against x and t. 

3. Example 1: the Harry Dym equation 

To make this paper self-contained, as well as to convince readers of the applicability 
of our methodology outlined above, we will rederive the implicit single solitary wave 
solution of the H D  equation ( 3 )  (Hereman et a1 1989). 
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In accordance with step ( l ) ,  we first rewrite (3)  entirely in terms of 1: To achieve 

( 1 5 )  
As a second step in finding single solitary wave solutions, we use ( lo) ,  and integrate 

(16) 
which is indeed of the form of ( 1 1 ) .  The quantities c1 and c2 are integration constants. 
Now, we make the appropriate choice for D /  H1, namely 

this, we use (4) and (9) and obtain 

- H2 Ff = F3 Hl [(a/ af) ( H1/ D ) [ (a/ af) ( Hl / D 1 F,I 1. 

( 1 5 )  twice: 

dF/df = ( D / H 1 ) { - 2 c l F  - 2 ~ 2 +  v F ” } ” ~  

D / H 1  = F (17)  

F(f) = tanh2{( ~ / 4 ) ” ~ f }  (18) 

and set U = c2 = - 2 c 1 .  One more integration then yields 

where v has to be positive. 

can write 
The third step involves the evaluation of H 3 ( f ) .  Using (17)  and (18)  in (14), we 

H 3 ( f )  = ( 1  -Hi(f))f+CHi(f)+Hi(f)(4/v)1’2tanh{(v/4)1’2f). (19) 
The functions F(f) and H 3 ( f )  are plotted in figures l ( a )  and ( b )  respectively, for 

H I  =constant = i, v = 2 and C = 0. Figures l ( c )  and ( d )  show u ( x ,  t )  and I?3 (x, t )  = 
H 3 ( f )  against x, at t = 0, and were plotted in accordance with step 4 of the general 
procedure. Our result is similar to the solution reported by Hereman et a1 (1989). 

F:’LI 0 .I - 9  -6 -3  0 

f 

I 
I 
I 

f 

X X 

Figure 1. The implicit solution for the H D  equation with H,(f) =;, U = 2 and C = 0. ( a )  
F (eyuation (18)) against f; ( b )  H:, (equation (19)) against f; ( c )  u ( x ,  t )  against x at r = 0; 
( d )  H, (x ,  1) against x at t = O .  
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4. Example 2: the Korteweg-de Vries equation 

As a second example to show the implementation of implicit solutions we have chosen 
the K d v  equation (Korteweg and de Vries 1895, Lamb 1980, Hereman et a1 1986) 

U, + auu, + u3, = 0 (20) 

where a is a nonlinearity constant, and where the coefficient of the dispersive term 
u3x has been scaled to unity. 

Combining (4), (9) and ( lo) ,  U and its derivatives are expressible as 

u ( x ,  t )  + F(f) 

With the above substitutions, (20) reads 

Hence, upon two integrations, (22) becomes 

d F /  d f = D /  HI{ - ( a /  3) F 3  + uF’ + 2 ~ 1  F + 2~2)’” 

where c1 and c2 are integration constants. Choosing c2 = 0 and D/ HI = ( 
convenience, (23) is readily integrated (Gradshteyn and Ryzhik 1984) to obtain 

for 

- b i [ ( 4 a c -  b2) tanh2(p)/(l  - t a r ~ h ~ ( p ) ) ] ’ / ~  
F ( f ) =  [b2-4ac tanh2(p)]/[2a(l -tanh2(p))] (240 1 

with 

c = a / 3  b=-U a = -2c1 > o  b2 s 4ac p = (a)1/2$ (24b) 
Since we have the solution for F(f), (14) gives a relationship between HI and H 3 .  

For the particular case where HI is constant we would have 

Figures 2(a)  and (b) show both F and H3 for HI = a = b( = - U )  = c = 1 and C = 0 
as functions o f f ;  while figures 2(c) and ( d )  show u ( x ,  t )  and f i 3 ( x ,  t ) = H 3 ( f )  as 
functions of x-  ut at t = O .  H3 is numerically computed using (14), (23) and (24). 
Thereafter, x - ut is computed as a function o f f  using (4b) and ( lo) ,  and combined 
with figures 2(a)  and (b )  to generate figures 2(c) and ( d ) .  

In order to be absolutely sure that we have, in fact, found a new solution, we 
program the Kdv equation (20) with the initial condition as in figure 2(c). A finite 
difference scheme with proper modification to ensure stability of the numerical 
algorithm, as suggested by Dodd et a1 (1982), is employed. This demands ensuring 
that A t / ( A ~ ) ~ ~ ( 4 + ( A x ) ~ l u ~ l ) - ’  where At, Ax are the time and space step sizes and 
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f 

X X 

Figure 2. A new implicit solution for the KdV equation H , ( f )  = 1, a, b, c = 1 and C = 0. 
( a )  F (equftion (24)) against f ;  ( b )  H ,  (equation (25 ) )  against f ;  ( c )  u ( x ,  I) against x at 
t = O ;  ( d )  H , ( x ,  I )  against I at 1 = 0 .  

uo is the maximum value of U over the range of interest. Note that ( 2 0 )  has been 
written in a moving frame of reference with a velocity co which, though explicitly 
absent from ( 2 0 )  and, hence, from the program, implicitly comes in through the ratio 
A x / A t .  The computational advantage in programming ( 2 0 )  in the travelling frame lies 
in the fact that a much smaller grid size may be used. Figure 3 shows the propagation 
of the initial condition as in figure 2 ( c )  over t = 3 . 3 3 ~  low3. With the choice of 
A x  = 2.83 x lop3 and A t  = 5.553 x lo-’; co becomes equal to 509 637.1 1, corresponding 
to a translation of 1698 in the laboratory frame of reference. The figures have been 
drawn in the laboratory frame of reference to explicitly bring out the preservation of 
the waveshape after a distance 1698 of travel, which corresponds to about 566 times 
the width of the initial pulse. Figure 4 shows the distortion after propagation for an 
initial condition 2 u ( x ,  0) with u ( x ,  0) as in figure 2 ( c ) .  An initial condition f u ( x ,  0) 
also shows similar distortion after the same distance of propagation. 

5. Example 3: the modified Korteweg4e Vries equation 

The M K d v  equation (Lamb 1980, Dodd er al 1982) is quite similar to the K d v  but has 
a cubic nonlinearity. Both equations are connected by the Miura transformation (Lamb 
1980). If U is a solution to the M K d v  equation 

(26) U, + (Yu2u, + u3x = 0 
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Distance 

-1.7 
-2OL,--. V I . I 

1697 1699 1701 1703 1705 
Dis t an c e 

Figure3. Propagation of the implicit solution for the KdV equation for H , ( f )  = 1, a = b = c = 
1 and C = 0 at ( a )  r = 0, ( b )  I = 3.33 x The horizontal axis represents distance in a 
laboratory frame of reference. 

then 

w = (Y ( U * + (-6/ (Y U , ) /  (Y 

is a solution to the Kdv equation 

W ,  + C Y l  WW, + w3x = 0. (28) 

As in the Kdv case, we use substitutions as in (21) to rewrite (26) as: 

-OF,+ aFZF,+ (~/~f)[(HilD)(~l~f)[(H~lD)F~11 = O  (29) 

f =  (D/Hl ) - ’ {  - ( a / 6 ) F 4 +  V F ~ + ~ C ~ F + ~ C ~ } - ~ ’ ~  dF. (30) 

F = (- G)I/* (31) 

D /  H I  = F / 2 .  (32) 

After three integrations, (29) becomes 

We now introduce a new function G such that 

and select 
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0 

-1 

* -2  

- 3  

- 4  _ , . I _ I . I . , _ I . ~  
-2  0 2 4 6 

\I 
Distance 

V I - . . , ,  -- 
1697 1699 1701 1703 1705 

- 4 4 7 .  I , I - 
Distonte 

Figure 4. Propagation of an initial condition equal to twice the KdV solution shown in 
figure 2 ( c )  at ( a )  t = 0, ( b )  t = 3.33 x lo-’. The horizontal axis has the same meaning as 
in figure 3. 

With these assumptions, and upon setting c1 = 0, (30) becomes 

f = - 1 G-’{ - ( a / 6 )  G2 - uG + 2 ~ ~ } - ’ ‘ ~  dG. (33) 

As may be readily verified the solution for G is expressible as (Gradshteyn and Ryzhik 
1984) 

-b+[(4ac- b2) tanh2(p)/( l  -tanh’(p))]’” 
(34a) G ( f ) =  [b2-4ac tanh2(p)]/[2a(l -tanh2(p))] 

with 

c = - a / 6  b = - v  a=2c ,>O p = -(a)1’2J: (34b) 
The solution to (29) then finally is 

(35) 
b -[(4ac- b2) tanh2(p)/(l  -tanh2(p))]”* 

[b2 -4ac tanh2(p)]/[2a( 1 -tanh2(p))] 

while iY3 from (14), upon taking H , ( f )  =f for variety, is 

(36 )  
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f 

X 

Figure 5. A new implicit solution for the MKdV equation with H , ( f ) = f ,  a = 3 ,  b =  1 ,  
c =0.25 and C = 1 .  ( a )  F (equftion (35)) againstf; ( b )  H3 (equation (36)) againstf; (c)  
u ( x ,  I )  against x at I = 0; ( d )  H3(x, I )  against x at f = 0. 
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Figures 5 ( a ) ,  (b) and (c), ( d )  show F and H, for H , ( f )  =f, a = 3, b = 1, c = 0.25 

Straightforward application of the Miura transformation will lead us to yet another 
and C = 1 as functions o f f  and, U, k, as functions of x - ut at r = 0, respectively. 

solution to the Kdv equation. 

6. Example 4: the Boussinesq equation 

As an example of a wave equation we choose the BE equation which was first derived 
by Boussinesq (1871,1872) to describe shallow-water waves propagating in both 
directions. It has been also used to describe displacements in a one-dimensional lattice 
with an exponential potential (Zabusky 1967). The assumed form for the BE equation 
will be 

U 2 , - U 2 x - U 4 x + 3 3 a ( U 2 ) 2 x = 0 .  (37) 
Adhering to the strategy of the method, we involve (21) in (37) to give 

u2( a/ af ) [ ( H1/ D ) 4 1  - (a/ af 1 [ ( HI / D )  5 1  
- (a/af)[(HI/ D>(a/af)[(Hl/ D)(a/af)[(H1/ D)F,lll 
+ 6 a  (d/af) ( HI/ D )  FFf = 0. 

( u 2 -  1 ) F -  ( H l / D ) ( a / d f ) [ ( H l / D ) F , ] + 3 a F 2 =  c i f+  c2 

(38) 

(39) 

After two integrations, we obtain 

where c I ,  c2 are integration constants. Choosing c, = 0, then multiplying by F, and 
next integrating for a third time, results in 

;(U’- 1)F2 - t [ (H1/D)F, l2+  a F 3  = c ~ F +  CJ (40) 
where c, is another integration constant. 

the KdV: 
Following the same steps as in section 4 we end up with the same answer as for 

-b*[(4ac- b2) tanh2(p)/(l  -tanh2(p))]”2 
F ( f ) =  [b2-4ac tanh2(p)]/[2a(l - tanh2(p))]  

but with 

c = 2 a  b = ( U 2 -  1) a=-2c ,>O p = ( a ) ” 2 f  (41b) 

With Hi = a = b = C = 1 and c = 2, the plots for the BE equation become identical 
to figures 2(a),  (b), (c) and ( d )  drawn for the Kdv equation. 

7. Example 5: the generalised K d v  equation 

The purpose of this section will be to demonstrate the applicability of our solution 
method to non-integrable systems. An example considered here is the generalised Kdv 
equation (Lax 1968) 

U, + aunux + u3x = 0. (43) 
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Figure 6. A new implicit solution of the generalised kdv equation for n = 4  and with 
H , ( f ) = j ;  a = - 6 ,  U =  -1.2 and C = 2 .  ( a )  F (equation (50)) againstf; ( b )  H, (equation 
(51)) againstf; ( c )  u ( x ,  I )  dgainst x at f = O ;  ( d )  H3(x, I )  against x at t =O. 
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The particular cases of n = 1 ( K d v )  and n = 2 ( M K d v ) ,  which are known to be integrable, 
have already been solved in sections 4 and 5 .  For all other values of n, the equation 
(43) is non-integrable and possesses a finite number of conserved quantities (Lax 1968). 
Using the same set of transformations as before (see (23)), equation (43) becomes 

- UFf + a F" F, + (a/ a f  ) [ ( HI / 1 (a/ a f  ) [ ( HI / D ) 5 1  1 = 0. (44) 

After three integrations, (44) becomes 

f = 1 ( D / H 1 ) - ' {  - [ 2 a / (  n + 1)( n + 2)]F""+ uF2+ 2 c , F +  2 ~ ~ } - ' ' ~  dF. (45) 

To readily get closed-form results, we choose c1 = 0, c2 = -a/15, U = a / 5  and n = 4. 
Now, by introducing a new function G such that 

F = (G)"' (46) 

and selecting 

D / H 1  = 1 / ( 4 + 2 G )  (47) 

equation (45) becomes 

As may be readily verified the solution for G is expressible as (Gradshteyn and Ryzhik 
1984) 

G = tanh2{(-u/12)"'f} U CO. (49) 

F =  tanh((-~/12)"*f} u < o  (50) 

The solution to (44) then finally is 

while H ,  from equation (16), upon taking H , ( f )  =f, is 

H d f ) = ( C + l ) f - - f l  ( D / H , ) d f :  

Figure 6 ( a ) ,  ( b )  and ( c ) ,  ( d )  show F and H ,  for H , ( f )  =f, a = -6, U = -1.2 and 
C = 1 as functions of f  and U, fi3 as functions of x - ut at t = 0, respectively. 

8. Discussion and conclusion 

Through the above examples of the H D ,  KdV, MKdV, BE and the generalised KdV 

equations we have shown the simplicity and the ease of the method for finding implicit 
solutions. We may remark that the integrability of the PDE is not essential for the 
existence of implicit solutions. For instance, the non-integrable modifications of the 
BE (e.g. the improved Boussinesq and the modified improved Boussinesq equations 
(Iskandar and Jain 1980, Soerensen et al 1982) may be shown to possess implicit 
solitary wave solutions similar to that of the BE. This is because the resulting ODE, 
after the change of variables to a travelling frame of reference, is similar to equation (39). 
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The effectiveness of the method is limited by the class of integrals expressible in 
closed form which, in turn, imposes a severe restriction on the degree of nonlinearity 
in the PDE. For instance the generalised H D  equation U, = u n u I x  may be shown to have 
non-physical solutions for n = 1 and 2. For n = 4, a tanh2-type solution for F ( f )  is 
possible through a clever choice of D /  HI F(  F /  ( 1 + 2F))1'2, For n > 4, it is not possible 
to obtain closed-form solutions. Similarly, in the class of generalised K d v  equations 
U, + aunux + u3x = 0, closed-form solutions are obtainable for n = 4 over and above the 
cases n = 1 (Kdv)  and n = 2 (MKdv)  discussed in the paper. Specifically, for n = 4, the 
choice D/  HI = f ( 2 f  F') yields a tanh-type solution for F ( f ) ,  with proper choices for 
some of the integration constants. Again, for n = 3 and n > 4, no closed form solutions 
appear to be possible. 

Notwithstanding these limitations, it must be reiterated that the implicit solutions 
derived in this paper for the Kdv, MKdV and BE equations are new and not merely the 
previously known hump-type solitary wave solutions in disguise. It is clear from the 
discussion in the introduction that the implicit solution to, for instance, the KdV 
equation, is inherently different from that of the HD equation or the solution of the 
latter transformed hodographically. Furthermore, conventional solutions of the Kdv,  
M K d v  and BE equations are obtainable only by choosing D/ HI as a function off rather 
than F. Moreover, the solutions of the above equations, when plotted, are cusp-type 
and different from the conventional sech- or sech'-type solutions. Finally, when allowed 
to propagate in accordance to their respective equations, the solutions show no change 
in shape. 

Table 1 lists the PDES solved using our implicit formalism, the choice of the ratio 
D/HL and the expressions for F ( f )  and H3(f). Incorporating equation (46), u(x ,  t )  
and H 3 ( x ,  t )  can be determined. 

Finally, we would like to mention that further work is being done to employ the 
technique developed in the paper for more complicated examples including coupled 
systems, and for cases where the velocity, given as the ratio of H,/ H I ,  is not constant 
but rather a function of E 
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